4 research outputs found

    Breaking Down the Barriers To Operator Workload Estimation: Advancing Algorithmic Handling of Temporal Non-Stationarity and Cross-Participant Differences for EEG Analysis Using Deep Learning

    Get PDF
    This research focuses on two barriers to using EEG data for workload assessment: day-to-day variability, and cross- participant applicability. Several signal processing techniques and deep learning approaches are evaluated in multi-task environments. These methods account for temporal, spatial, and frequential data dependencies. Variance of frequency- domain power distributions for cross-day workload classification is statistically significant. Skewness and kurtosis are not significant in an environment absent workload transitions, but are salient with transitions present. LSTMs improve day- to-day feature stationarity, decreasing error by 59% compared to previous best results. A multi-path convolutional recurrent model using bi-directional, residual recurrent layers significantly increases predictive accuracy and decreases cross-participant variance. Deep learning regression approaches are applied to a multi-task environment with workload transitions. Accounting for temporal dependence significantly reduces error and increases correlation compared to baselines. Visualization techniques for LSTM feature saliency are developed to understand EEG analysis model biases

    Deep Long Short-term Memory Structures Model Temporal Dependencies Improving Cognitive Workload Estimation

    Get PDF
    Using deeply recurrent neural networks to account for temporal dependence in electroencephalograph (EEG)-based workload estimation is shown to considerably improve day-to-day feature stationarity resulting in significantly higher accuracy (p \u3c .0001) than classifiers which do not consider the temporal dependence encoded within the EEG time-series signal. This improvement is demonstrated by training several deep Recurrent Neural Network (RNN) models including Long Short-Term Memory (LSTM) architectures, a feedforward Artificial Neural Network (ANN), and Support Vector Machine (SVM) models on data from six participants who each perform several Multi-Attribute Task Battery (MATB) sessions on five separate days spread out over a month-long period. Each participant-specific classifier is trained on the first four days of data and tested using the fifth’s. Average classification accuracy of 93.0% is achieved using a deep LSTM architecture. These results represent a 59% decrease in error compared to the best previously published results for this dataset. This study additionally evaluates the significance of new features: all combinations of mean, variance, skewness, and kurtosis of EEG frequency-domain power distributions. Mean and variance are statistically significant features, while skewness and kurtosis are not. The overall performance of this approach is high enough to warrant evaluation for inclusion in operational systems

    Cross-Participant EEG-Based Assessment of Cognitive Workload Using Multi-Path Convolutional Recurrent Neural Networks

    Get PDF
    Applying deep learning methods to electroencephalograph (EEG) data for cognitive state assessment has yielded improvements over previous modeling methods. However, research focused on cross-participant cognitive workload modeling using these techniques is underrepresented. We study the problem of cross-participant state estimation in a non-stimulus-locked task environment, where a trained model is used to make workload estimates on a new participant who is not represented in the training set. Using experimental data from the Multi-Attribute Task Battery (MATB) environment, a variety of deep neural network models are evaluated in the trade-space of computational efficiency, model accuracy, variance and temporal specificity yielding three important contributions: (1) The performance of ensembles of individually-trained models is statistically indistinguishable from group-trained methods at most sequence lengths. These ensembles can be trained for a fraction of the computational cost compared to group-trained methods and enable simpler model updates. (2) While increasing temporal sequence length improves mean accuracy, it is not sufficient to overcome distributional dissimilarities between individuals’ EEG data, as it results in statistically significant increases in cross-participant variance. (3) Compared to all other networks evaluated, a novel convolutional-recurrent model using multi-path subnetworks and bi-directional, residual recurrent layers resulted in statistically significant increases in predictive accuracy and decreases in cross-participant variance
    corecore